HalftoneShader.js 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. /**
  2. * RGB Halftone shader for three.js.
  3. * NOTE:
  4. * Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square)
  5. * Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker)
  6. */
  7. var HalftoneShader = {
  8. uniforms: {
  9. 'tDiffuse': { value: null },
  10. 'shape': { value: 1 },
  11. 'radius': { value: 4 },
  12. 'rotateR': { value: Math.PI / 12 * 1 },
  13. 'rotateG': { value: Math.PI / 12 * 2 },
  14. 'rotateB': { value: Math.PI / 12 * 3 },
  15. 'scatter': { value: 0 },
  16. 'width': { value: 1 },
  17. 'height': { value: 1 },
  18. 'blending': { value: 1 },
  19. 'blendingMode': { value: 1 },
  20. 'greyscale': { value: false },
  21. 'disable': { value: false }
  22. },
  23. vertexShader: [
  24. 'varying vec2 vUV;',
  25. 'void main() {',
  26. ' vUV = uv;',
  27. ' gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);',
  28. '}'
  29. ].join( '\n' ),
  30. fragmentShader: [
  31. '#define SQRT2_MINUS_ONE 0.41421356',
  32. '#define SQRT2_HALF_MINUS_ONE 0.20710678',
  33. '#define PI2 6.28318531',
  34. '#define SHAPE_DOT 1',
  35. '#define SHAPE_ELLIPSE 2',
  36. '#define SHAPE_LINE 3',
  37. '#define SHAPE_SQUARE 4',
  38. '#define BLENDING_LINEAR 1',
  39. '#define BLENDING_MULTIPLY 2',
  40. '#define BLENDING_ADD 3',
  41. '#define BLENDING_LIGHTER 4',
  42. '#define BLENDING_DARKER 5',
  43. 'uniform sampler2D tDiffuse;',
  44. 'uniform float radius;',
  45. 'uniform float rotateR;',
  46. 'uniform float rotateG;',
  47. 'uniform float rotateB;',
  48. 'uniform float scatter;',
  49. 'uniform float width;',
  50. 'uniform float height;',
  51. 'uniform int shape;',
  52. 'uniform bool disable;',
  53. 'uniform float blending;',
  54. 'uniform int blendingMode;',
  55. 'varying vec2 vUV;',
  56. 'uniform bool greyscale;',
  57. 'const int samples = 8;',
  58. 'float blend( float a, float b, float t ) {',
  59. // linear blend
  60. ' return a * ( 1.0 - t ) + b * t;',
  61. '}',
  62. 'float hypot( float x, float y ) {',
  63. // vector magnitude
  64. ' return sqrt( x * x + y * y );',
  65. '}',
  66. 'float rand( vec2 seed ){',
  67. // get pseudo-random number
  68. 'return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 );',
  69. '}',
  70. 'float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) {',
  71. // apply shape-specific transforms
  72. ' float dist = hypot( coord.x - p.x, coord.y - p.y );',
  73. ' float rad = channel;',
  74. ' if ( shape == SHAPE_DOT ) {',
  75. ' rad = pow( abs( rad ), 1.125 ) * rad_max;',
  76. ' } else if ( shape == SHAPE_ELLIPSE ) {',
  77. ' rad = pow( abs( rad ), 1.125 ) * rad_max;',
  78. ' if ( dist != 0.0 ) {',
  79. ' float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y );',
  80. ' dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE;',
  81. ' }',
  82. ' } else if ( shape == SHAPE_LINE ) {',
  83. ' rad = pow( abs( rad ), 1.5) * rad_max;',
  84. ' float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y;',
  85. ' dist = hypot( normal.x * dot_p, normal.y * dot_p );',
  86. ' } else if ( shape == SHAPE_SQUARE ) {',
  87. ' float theta = atan( p.y - coord.y, p.x - coord.x ) - angle;',
  88. ' float sin_t = abs( sin( theta ) );',
  89. ' float cos_t = abs( cos( theta ) );',
  90. ' rad = pow( abs( rad ), 1.4 );',
  91. ' rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) );',
  92. ' }',
  93. ' return rad - dist;',
  94. '}',
  95. 'struct Cell {',
  96. // grid sample positions
  97. ' vec2 normal;',
  98. ' vec2 p1;',
  99. ' vec2 p2;',
  100. ' vec2 p3;',
  101. ' vec2 p4;',
  102. ' float samp2;',
  103. ' float samp1;',
  104. ' float samp3;',
  105. ' float samp4;',
  106. '};',
  107. 'vec4 getSample( vec2 point ) {',
  108. // multi-sampled point
  109. ' vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) );',
  110. ' float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2;',
  111. ' float step = PI2 / float( samples );',
  112. ' float dist = radius * 0.66;',
  113. ' for ( int i = 0; i < samples; ++i ) {',
  114. ' float r = base + step * float( i );',
  115. ' vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist );',
  116. ' tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) );',
  117. ' }',
  118. ' tex /= float( samples ) + 1.0;',
  119. ' return tex;',
  120. '}',
  121. 'float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) {',
  122. // get colour for given point
  123. ' float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res;',
  124. ' if ( channel == 0 ) {',
  125. ' c.samp1 = getSample( c.p1 ).r;',
  126. ' c.samp2 = getSample( c.p2 ).r;',
  127. ' c.samp3 = getSample( c.p3 ).r;',
  128. ' c.samp4 = getSample( c.p4 ).r;',
  129. ' } else if (channel == 1) {',
  130. ' c.samp1 = getSample( c.p1 ).g;',
  131. ' c.samp2 = getSample( c.p2 ).g;',
  132. ' c.samp3 = getSample( c.p3 ).g;',
  133. ' c.samp4 = getSample( c.p4 ).g;',
  134. ' } else {',
  135. ' c.samp1 = getSample( c.p1 ).b;',
  136. ' c.samp3 = getSample( c.p3 ).b;',
  137. ' c.samp2 = getSample( c.p2 ).b;',
  138. ' c.samp4 = getSample( c.p4 ).b;',
  139. ' }',
  140. ' dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius );',
  141. ' dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius );',
  142. ' dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius );',
  143. ' dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius );',
  144. ' res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0;',
  145. ' res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0;',
  146. ' res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0;',
  147. ' res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0;',
  148. ' res = clamp( res, 0.0, 1.0 );',
  149. ' return res;',
  150. '}',
  151. 'Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) {',
  152. // get containing cell
  153. ' Cell c;',
  154. // calc grid
  155. ' vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) );',
  156. ' float threshold = step * 0.5;',
  157. ' float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y );',
  158. ' float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y );',
  159. ' vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal );',
  160. ' float offset_normal = mod( hypot( offset.x, offset.y ), step );',
  161. ' float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0;',
  162. ' float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir;',
  163. ' float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step );',
  164. ' float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0;',
  165. ' float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir;',
  166. // get closest corner
  167. ' c.normal = n;',
  168. ' c.p1.x = p.x - n.x * normal_scale + n.y * line_scale;',
  169. ' c.p1.y = p.y - n.y * normal_scale - n.x * line_scale;',
  170. // scatter
  171. ' if ( scatter != 0.0 ) {',
  172. ' float off_mag = scatter * threshold * 0.5;',
  173. ' float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2;',
  174. ' c.p1.x += cos( off_angle ) * off_mag;',
  175. ' c.p1.y += sin( off_angle ) * off_mag;',
  176. ' }',
  177. // find corners
  178. ' float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step );',
  179. ' float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step );',
  180. ' c.p2.x = c.p1.x - n.x * normal_step;',
  181. ' c.p2.y = c.p1.y - n.y * normal_step;',
  182. ' c.p3.x = c.p1.x + n.y * line_step;',
  183. ' c.p3.y = c.p1.y - n.x * line_step;',
  184. ' c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step;',
  185. ' c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step;',
  186. ' return c;',
  187. '}',
  188. 'float blendColour( float a, float b, float t ) {',
  189. // blend colours
  190. ' if ( blendingMode == BLENDING_LINEAR ) {',
  191. ' return blend( a, b, 1.0 - t );',
  192. ' } else if ( blendingMode == BLENDING_ADD ) {',
  193. ' return blend( a, min( 1.0, a + b ), t );',
  194. ' } else if ( blendingMode == BLENDING_MULTIPLY ) {',
  195. ' return blend( a, max( 0.0, a * b ), t );',
  196. ' } else if ( blendingMode == BLENDING_LIGHTER ) {',
  197. ' return blend( a, max( a, b ), t );',
  198. ' } else if ( blendingMode == BLENDING_DARKER ) {',
  199. ' return blend( a, min( a, b ), t );',
  200. ' } else {',
  201. ' return blend( a, b, 1.0 - t );',
  202. ' }',
  203. '}',
  204. 'void main() {',
  205. ' if ( ! disable ) {',
  206. // setup
  207. ' vec2 p = vec2( vUV.x * width, vUV.y * height );',
  208. ' vec2 origin = vec2( 0, 0 );',
  209. ' float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25;',
  210. // get channel samples
  211. ' Cell cell_r = getReferenceCell( p, origin, rotateR, radius );',
  212. ' Cell cell_g = getReferenceCell( p, origin, rotateG, radius );',
  213. ' Cell cell_b = getReferenceCell( p, origin, rotateB, radius );',
  214. ' float r = getDotColour( cell_r, p, 0, rotateR, aa );',
  215. ' float g = getDotColour( cell_g, p, 1, rotateG, aa );',
  216. ' float b = getDotColour( cell_b, p, 2, rotateB, aa );',
  217. // blend with original
  218. ' vec4 colour = texture2D( tDiffuse, vUV );',
  219. ' r = blendColour( r, colour.r, blending );',
  220. ' g = blendColour( g, colour.g, blending );',
  221. ' b = blendColour( b, colour.b, blending );',
  222. ' if ( greyscale ) {',
  223. ' r = g = b = (r + b + g) / 3.0;',
  224. ' }',
  225. ' gl_FragColor = vec4( r, g, b, 1.0 );',
  226. ' } else {',
  227. ' gl_FragColor = texture2D( tDiffuse, vUV );',
  228. ' }',
  229. '}'
  230. ].join( '\n' )
  231. };
  232. export { HalftoneShader };