SkyMesh.js 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. import {
  2. BackSide,
  3. BoxGeometry,
  4. Mesh,
  5. NodeMaterial,
  6. Vector3
  7. } from 'three';
  8. import { float, Fn, vec3, acos, add, mul, clamp, cos, dot, exp, max, mix, modelViewProjection, normalize, positionWorld, pow, smoothstep, sub, varying, varyingProperty, vec4, uniform, cameraPosition } from 'three/tsl';
  9. /**
  10. * Based on "A Practical Analytic Model for Daylight"
  11. * aka The Preetham Model, the de facto standard analytic skydome model
  12. * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
  13. *
  14. * First implemented by Simon Wallner
  15. * http://simonwallner.at/project/atmospheric-scattering/
  16. *
  17. * Improved by Martin Upitis
  18. * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
  19. *
  20. * Three.js integration by zz85 http://twitter.com/blurspline
  21. */
  22. class SkyMesh extends Mesh {
  23. constructor() {
  24. const material = new NodeMaterial();
  25. super( new BoxGeometry( 1, 1, 1 ), material );
  26. this.turbidity = uniform( 2 );
  27. this.rayleigh = uniform( 1 );
  28. this.mieCoefficient = uniform( 0.005 );
  29. this.mieDirectionalG = uniform( 0.8 );
  30. this.sunPosition = uniform( new Vector3() );
  31. this.upUniform = uniform( new Vector3( 0, 1, 0 ) );
  32. this.isSky = true;
  33. const vertexNode = /*@__PURE__*/ Fn( () => {
  34. // constants for atmospheric scattering
  35. const e = float( 2.71828182845904523536028747135266249775724709369995957 );
  36. // const pi = float( 3.141592653589793238462643383279502884197169 );
  37. // wavelength of used primaries, according to preetham
  38. // const lambda = vec3( 680E-9, 550E-9, 450E-9 );
  39. // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
  40. // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
  41. const totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
  42. // mie stuff
  43. // K coefficient for the primaries
  44. // const v = float( 4.0 );
  45. // const K = vec3( 0.686, 0.678, 0.666 );
  46. // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
  47. const MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
  48. // earth shadow hack
  49. // cutoffAngle = pi / 1.95;
  50. const cutoffAngle = float( 1.6110731556870734 );
  51. const steepness = float( 1.5 );
  52. const EE = float( 1000.0 );
  53. // varying sun position
  54. const vSunDirection = normalize( this.sunPosition );
  55. varyingProperty( 'vec3', 'vSunDirection' ).assign( vSunDirection );
  56. // varying sun intensity
  57. const angle = dot( vSunDirection, this.upUniform );
  58. const zenithAngleCos = clamp( angle, - 1, 1 );
  59. const sunIntensity = EE.mul( max( 0.0, float( 1.0 ).sub( pow( e, cutoffAngle.sub( acos( zenithAngleCos ) ).div( steepness ).negate() ) ) ) );
  60. varyingProperty( 'float', 'vSunE' ).assign( sunIntensity );
  61. // varying sun fade
  62. const vSunfade = float( 1.0 ).sub( clamp( float( 1.0 ).sub( exp( this.sunPosition.y.div( 450000.0 ) ) ), 0, 1 ) );
  63. varyingProperty( 'float', 'vSunfade' ).assign( vSunfade );
  64. // varying vBetaR
  65. const rayleighCoefficient = this.rayleigh.sub( float( 1.0 ).mul( float( 1.0 ).sub( vSunfade ) ) );
  66. // extinction (absorbtion + out scattering)
  67. // rayleigh coefficients
  68. varyingProperty( 'vec3', 'vBetaR' ).assign( totalRayleigh.mul( rayleighCoefficient ) );
  69. // varying vBetaM
  70. const c = float( 0.2 ).mul( this.turbidity ).mul( 10E-18 );
  71. const totalMie = float( 0.434 ).mul( c ).mul( MieConst );
  72. varyingProperty( 'vec3', 'vBetaM' ).assign( totalMie.mul( this.mieCoefficient ) );
  73. // position
  74. const position = modelViewProjection();
  75. position.z.assign( position.w ); // set z to camera.far
  76. return position;
  77. } )();
  78. const fragmentNode = /*@__PURE__*/ Fn( () => {
  79. const vSunDirection = varying( vec3(), 'vSunDirection' );
  80. const vSunE = varying( float(), 'vSunE' );
  81. const vSunfade = varying( float(), 'vSunfade' );
  82. const vBetaR = varying( vec3(), 'vBetaR' );
  83. const vBetaM = varying( vec3(), 'vBetaM' );
  84. // constants for atmospheric scattering
  85. const pi = float( 3.141592653589793238462643383279502884197169 );
  86. // optical length at zenith for molecules
  87. const rayleighZenithLength = float( 8.4E3 );
  88. const mieZenithLength = float( 1.25E3 );
  89. // 66 arc seconds -> degrees, and the cosine of that
  90. const sunAngularDiameterCos = float( 0.999956676946448443553574619906976478926848692873900859324 );
  91. // 3.0 / ( 16.0 * pi )
  92. const THREE_OVER_SIXTEENPI = float( 0.05968310365946075 );
  93. // 1.0 / ( 4.0 * pi )
  94. const ONE_OVER_FOURPI = float( 0.07957747154594767 );
  95. //
  96. const direction = normalize( positionWorld.sub( cameraPosition ) );
  97. // optical length
  98. // cutoff angle at 90 to avoid singularity in next formula.
  99. const zenithAngle = acos( max( 0.0, dot( this.upUniform, direction ) ) );
  100. const inverse = float( 1.0 ).div( cos( zenithAngle ).add( float( 0.15 ).mul( pow( float( 93.885 ).sub( zenithAngle.mul( 180.0 ).div( pi ) ), - 1.253 ) ) ) );
  101. const sR = rayleighZenithLength.mul( inverse );
  102. const sM = mieZenithLength.mul( inverse );
  103. // combined extinction factor
  104. const Fex = exp( mul( vBetaR, sR ).add( mul( vBetaM, sM ) ).negate() );
  105. // in scattering
  106. const cosTheta = dot( direction, vSunDirection );
  107. // betaRTheta
  108. const c = cosTheta.mul( 0.5 ).add( 0.5 );
  109. const rPhase = THREE_OVER_SIXTEENPI.mul( float( 1.0 ).add( pow( c, 2.0 ) ) );
  110. const betaRTheta = vBetaR.mul( rPhase );
  111. // betaMTheta
  112. const g2 = pow( this.mieDirectionalG, 2.0 );
  113. const inv = float( 1.0 ).div( pow( float( 1.0 ).sub( float( 2.0 ).mul( this.mieDirectionalG ).mul( cosTheta ) ).add( g2 ), 1.5 ) );
  114. const mPhase = ONE_OVER_FOURPI.mul( float( 1.0 ).sub( g2 ) ).mul( inv );
  115. const betaMTheta = vBetaM.mul( mPhase );
  116. const Lin = pow( vSunE.mul( add( betaRTheta, betaMTheta ).div( add( vBetaR, vBetaM ) ) ).mul( sub( 1.0, Fex ) ), vec3( 1.5 ) );
  117. Lin.mulAssign( mix( vec3( 1.0 ), pow( vSunE.mul( add( betaRTheta, betaMTheta ).div( add( vBetaR, vBetaM ) ) ).mul( Fex ), vec3( 1.0 / 2.0 ) ), clamp( pow( sub( 1.0, dot( this.upUniform, vSunDirection ) ), 5.0 ), 0.0, 1.0 ) ) );
  118. // nightsky
  119. const L0 = vec3( 0.1 ).mul( Fex );
  120. // composition + solar disc
  121. const sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos.add( 0.00002 ), cosTheta );
  122. L0.addAssign( vSunE.mul( 19000.0 ).mul( Fex ).mul( sundisk ) );
  123. const texColor = add( Lin, L0 ).mul( 0.04 ).add( vec3( 0.0, 0.0003, 0.00075 ) );
  124. const retColor = pow( texColor, vec3( float( 1.0 ).div( float( 1.2 ).add( vSunfade.mul( 1.2 ) ) ) ) );
  125. return vec4( retColor, 1.0 );
  126. } )();
  127. material.side = BackSide;
  128. material.depthWrite = false;
  129. material.vertexNode = vertexNode;
  130. material.fragmentNode = fragmentNode;
  131. }
  132. }
  133. export { SkyMesh };